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Abstract

Fully-cured aromatic polyimides were prepared from various combinations of five

dianhydrides and six diamines. When heated progressively under constant load, most

of the films elongated rapidly near their glass transition temperatures. In about half of

the nineteen materials, the strain was self-limiting - a possible indication of strain-

induced crystallinity. The presence of crystallinity was established unambiguously for
one material.



Introduction

Polyimide films are durable, radiation-resistant materials that are useful as electrical

insulation, in thermal blankets, as windows and barrier films, as supports in structures

such as deployable solar arrays, and potentially, in solar sails and large inflatable

platforms or reflectors. It is of interest to try to orient polyimides because the stiffness,

strength and dimensional stability of most glassy or crystallizable polymers can be

improved by stretch-orientation. In fact, commercial films such as Kapton® (DuPont)

and Upilex TM (Ube) are probably biaxially oriented.

Stretching is also commonly used to improve piezoelectric and photorefractive

materials. As polyimides are considered for these applications, it will be useful to

understand how they respond to stretching.

The two-step synthesis of polyimides 1 provides two opportunities to introduce

orientation. First, the soluble amic acid precursor may be stretched. It may be possible

to maintain or enhance the orientation as the succeeding imidization reaction is carried

out thermally or chemically. This approach has been used both with fibers 2 and with

films. 3 A disadvantage is the difficulty of managing a stretching process that is coupled

with simultaneous solvent outgassing and a high-temperature curing reaction.

A second and potentially simpler alternative is to stretch the fully-imidized material. 4

This requires that the polymer in question behave as a thermoplastic; fortunately, many

such materials have been discovered. In the present feasibility study, 19 different fully-

cured polyimides were screened using thermal deformation analysis (TDA). The TDA

technique, which involves heating to progressively higher temperatures under a

constant load, has been useful in the qualitative study of stretch-induced

crystallization. 5

Experimental

Each polyimide was prepared from stoichiometric amounts of purified diamine and

dianhydride. 6 Acronyms are summarized in Table 1.
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Table 1. Pol _,imide Monomers

Dianhydrides

BPDA

ODPA

BTDA

IDPA

6FDA

Structure

0

0

o
0 0

0° 0

0 0

0

0 0

0

0 0



Diamines

3,3'-ODA

4,4'-ODA

3,4'-ODA

1,3-APB

3,3'-DABP

4,4'-DABP

NH2"c;O'c;NH2
NH2 "_0_ NH2

NH2 o O'o"NH2
H2N'O  O' NH2

0

NH2_/NH2

NH2

Films were cast on soda-lime glass plates, dried in a reduced-humidity enclosure at

room temperature, and cured in air-circulating ovens at 100 °, 200 ° and 300°C

successively, holding for I hour at each temperature.

A density gradient column was prepared from aqueous sodium bromide with 2-

propanol as a wetting agent.

The thermal deformation apparatus 7 is shown schematically in Figure 1. The film

sample was gripped by stainless-steel clamps that were tightened using screws. To

prevent slipping and to help prevent film tearing at the grip, a piece of compliant

quartz felt was placed between the film and the clamping strip. The initial specimen

dimensions between clamps were 13 wide x 20 mm long.
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Dead-weight loading was applied via a chain attached to a swivel and a wire that ran
over two pulleys to a long-stroke DC displacement transducer. Nominal stressin all
caseswas 7.0+1.8MPa.

After the weight was applied, the displacement readout was zeroed at room
temperature and the oven temperature was ramped to 350°C. The initial ramp rate was
10°C/min., but above200°Cthe oven could only maintain about 4.5°C/min. Noticeable
stretching began 18 to 58minutes into the TDA experiment, depending on the polymer.
With this experimental approach,both the strain rate and the ultimate strain are
determined by the material behavior rather than being controlled by the apparatus.

Results and Discussion

The TDA traces are assembled in Figs. 2-6. Three distinct regions are evident in the

sigmoidal curves. The first region is below the softening point, where very little strain

occured. Then, most samples elongated fairly rapidly over a range of approximately

20°C beginning near the glass transition temperature. If the sample did not break at this

point, there followed a range of temperatures over which the strain rate was very small

again. This plateau at longer times, when it was seen in other polymers, has been

attributed 8'9 to strain-induced crystallization.

Although property improvements can be obtained by stretching materials that do not

crystallize, 1° crystallization can be helpful. The nascent crystals can serve as physical

crosslinks, preventing stress relaxation during the stretching process and allowing a

greater degree of orientation to be produced. In addition, crystallizing films can be

annealed under stress ("heat set") to stabilize them against relaxation and shrinkage

near the glass transition temperature. This raises their use temperatures relative to

amorphous materials.

Many thermoplastic polyimides form metastable crystals during solution imidization 11

but with the exception of very rigid or rod-like chains 3'12,they do not usually crystallize

spontaneously upon cooling from the melt. _3 It is remarkable, therefore, that of the 19

materials in the present screening study, several became cloudy and 10 exhibited well-

defined plateaux in the TDA experiment. Strain-induced crystallization could thus be a

very general route to improved properties in aromatic polyimides.

The theory of simultaneous stretching and crystallization is not well developed; most

treatments rely heavily on simplifying assumptions. _4 There is even disagreement on

whether the enhanced rate of crystallization arises primarily from nucleation or crystal

growth) 5'_6 It is clear, however, that the degree of orientation created in the amorphous

polymer is a key variable.

With this in mind, it appears that among the polymers studied here, those that contain

the 3,3'- diamines may have melt viscosities too low to allow efficient orientation. They

tend to stretch rapidly and break under constant load. At the other extreme was the

4,4'-DABP/BPDA, which did not stretch appreciably at all even though the starting film

is clear and flexible, with a Tg of 302°C. In between, we find for example the polymers

containing 3,4'-ODA. These readily strain-harden, which makes them rather forgiving

in terms of processing. Although the details of the TDA responses of the individual



polymers may depend somewhat on molecular weight, all the samples in the present
study were prepared at the highest molecular weight practical, so it is believed that
qualitative comparisons between materials should be valid.

In the discussion above, cloudiness and the leveling-off strain in the TDA experiment
were taken asevidence for crystallization. Neither, of course, is definitive. Cloudiness
would ordinarily imply the presenceof crystallites or voids that are large enough to
scattervisible light. In the present experiments stretching alsoproduced a surface
roughening, perhaps by accentuating the texture on the surfaceof the as-castfilm. One
side of the film remained shiny, however, and was quite featureless in the scanning
electron microscope at 1000X. It is not known whether the air side or the side that had
been castagainst the glassplate becameroughened, but the scattering was sufficient to
thwart attempts to measurebirefringence with prism-coupled or Abbe refractometers.
Someof the films appeared to have a sheenthat might be produced by light interacting
with crazes.

Figure 7 is a differential scanning calorimetry scanof one of the materials that may have
crystallized, 3,4'-ODA/ODPA. This particular specimenwas stretched isothermally at
260°C. There is a melting peak near 320°C,with a total melting endotherm of 21J/g.
Although the heatof fusion of this polymer is not known, comparison canbe made with
LARCTM-CPIand with Mitsui's Aurum, which have heatsof fusion of 92J/g and 139
J/g of crystals respectively.17'18By this estimate, then, the crystallinity of the stretched
3,4'-ODA/ODPA may be ashigh as20%. The shapeof the DSC curve suggests,
however, that there may have been some"cold crystallization" between the Tg (ca.
230°C)and the onset of melting. If a stretched sample is annealed for 30min at 260°C,it
exhibits two endotherms, one at 320°Cand a much smaller one with apeak at 275°C.
The total heatof melting for the two populations of crystals is N22J/g of polymer.

Density is often another useful indicator of crystallinity. Accordingly, stretchedand
unstretched 3,4'-ODA/ODPA films were compared. Although the oriented film had a
tensile modulus in the stretch direction over twice ashigh asthat of anunstretched film,
its density (1.3950g/cm 3)was only 1.1%higher. Given that the crystal density could be
expectedto be 13%higher than that of the completely amorphous polymer19,and
assuming that there areno unwetted voids, 8%crystallinity would be inferred for this
specimen.

Finally, it is known 4that when 3,4'-ODA/ODPA is stretched isothermally just aboveTg,
it undergoes strain-induced crystallization when the strain exceedsapproximately 2.5.
The X-ray diffraction pattern2°in Figure 8 shows conclusively that 3,4'-ODA/ODPA
films stretched isothermally to a strain of 5 arecrystalline, with a fiber repeat distanceof
20.8A. A systematic search2_for extended conformations of this polymer readily finds
severalwith a repeat unit end-to-end length of 20.2Aand an angular mismatch of only
4°; minor adjustments to bond anglesand torsions would easily bring this prediction
into agreementwith experiment.

It seemslikely that other polymers among those studied will crystallize well under
suitable stretching conditions. TDA provides very useful guidance asa starting point
for further (e.g.isothermal) stretching experiments.
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Conclusions

TDA is a useful screening tool for stretch-orientation. With it, 10 candidates for further

optimization were identified. Structural requirements for successful crystallization

appear to include both a relatively compact molecular conformation and a high enough

melt viscosity just above Tg to sustain a fairly high degree of orientation.
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